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Abstract - Objective: Electric hand prostheses are typically 

controlled using electromyographic (EMG) signals recorded from 

the residual muscles. However, non-stationarities that are 

characteristic for EMG interfaces impair the reliability of 

machine-learning-based approaches during daily life activities-

based approaches (e.g., the limb position effect). Including 

additional EMG-independent information in the classification 

algorithm may mitigate this problem. 

Methods: 

 In this study, we systematically investigated an electrical 

impedance myography (EIM) interface for its possible utility as an 

additional source of information to EMG. To this goal, six 

different hand-wrist motions in three arm positions were recorded 

from ten able-bodied volunteers and three prosthetic hand users. 

EIM and EMG data were evaluated in terms of information 

content and classified using linear discriminant analysis (LDA).  

Results:  EIM contained less information and was more strongly 

influenced by changing limb positions than EMG, but a 

combination of EIM and EMG outperformed EMG alone. 

Training with pooled data from multiple arm positions was 

necessary to mitigate the limb position effect. Conclusion: EIM can 

be valuable for myoelectric control as it contains complementary 

information to EMG, but it is also strongly influenced by changing 

arm positions. 

Significance: This paper provides fundamental insights required 

for advancing the application of EIM in the context of modern 

prosthesis control. 

 
Index Terms—myocontrol, hand prostheses, bioimpedance, 

electromyography, machine-learning  

I. INTRODUCTION 

LECTRICALLY powered hand prostheses are typically 

controlled with electromyographic (EMG) signals 

generated by the muscles of the residual limb. Conventionally, 

two pairs of electrodes integrated into the prosthetic sockets 

acquire and amplify the signals from two antagonistic muscles 

that are used to control a single degree of freedom (DOF) in two 

directions (e.g., hand opening and closing) [1]. To control more 

DOFs, the user can sequentially circle through the active 

functions (e.g.,  grip types or active joints) by generating a 

trigger signal through a co-contraction or a quick wrist motion 

[1]. This slow and cumbersome process limits the potential 

benefit of clinically available multifunctional prosthetic hands 

that have many actuated joints [2]. Recently, machine-learning-

based control approaches that use a higher number of EMG 

signals and allow to directly access all functions without 

switching became clinically available [3], [4]. The classifier in 

these systems is typically trained by recording the EMG activity 

of the residual limb during different phantom limb motions. 

Various features and classifiers have been proposed in the past 

decades [5], [6]. It has been demonstrated that in the context of 

myocontrol, the time-domain feature-set [7], in combination 

with linear discriminant analysis (LDA), provides reasonable 

results and is widely used even today, three decades after its 

introduction [8]–[11]. 

Under laboratory conditions, machine-learning approaches 

for myoelectric prosthesis control often yield excellent results; 

however, in unconstrained, physically demanding, and 

challenging activities of daily life, non-stationarities can lead to 

differences between the muscle patterns used to train the 

algorithm and the patterns generated in the respective prosthesis 

usage scenario. These differences can cause misclassifications 

that lead to unwanted motions [12], [13], which deteriorate the 

prosthesis’s usability and performance and consequently reduce 

the user’s satisfaction. A change of the arm position [14]–[16], 

small shifts of electrodes [17], [18], or changes in skin 

condition [12] are common reasons for such non-stationarities. 

Whereas electrode shifts can be mitigated by developing better 

socket technology and changed skin conditions can be, to some 

extent, addressed by enhanced signal post-processing, the limb 

position effect remains a crucial problem for achieving robust 

machine-learning-based myocontrol. The current state-of-the-

art techniques for tackling this issue include acquiring training 

data in several limb positions [14], [16], [19], and in 

combination with optimized feature sets [20]. To overcome the 

challenges associated with machine-learning-based myoelectric 

control, additional sources of information unrelated to the EMG 

signal could be used. Other studies explored inertial 

measurement units [21]–[23], ultrasound [24]–[26] or force 

resistors [27], [28] as additional modalities.  

Electrical impedance myography (EIM) is a promising 

alternative approach for measuring muscle activity. This 

technique is based on measuring changes in the tissues’ passive 

electrical characteristics, which occur during the geometrical 

changes typically induced by muscle contractions [29], [30]. 

EIM has the advantage that in contrast to other alternative 

muscle contraction measurement approaches, such as MMG or 
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optical setups, a common set of electrodes, cables and circuitry 

can be used. This makes EIM an excellent candidate for a 

supplementary information source to EMG. 

In this study, we systematically investigated the EIM 

interface for its possible utility in the context of myoelectric 

control on ten able-bodied participants and three participants 

with upper limb deficiency. We studied the classification 

performance while varying the following parameters: arm 

position, type of muscle contraction, signal features, and 

training data. We also assessed the overall reproducibility and 

information content of both EIM and EMG features. These 

evaluations allowed us to quantify the influence of different 

factors independently and in combination with each other, thus 

establishing a sound fundament for further research regarding 

the application of EIM technology in prosthetics. 

II. METHODS 

To investigate EIM as an alternative or additional control 

signal for prosthesis control, we recorded both EMG and EIM 

from the (residual) forearms of able-bodied and upper limb-

impaired participants during a series of (phantom) hand and 

wrist motions. During pilot tests with able-bodied participants, 

we found that using constrained (isometric muscle contractions) 

and unconstrained (concentric/eccentric muscle contractions) 

motions produced substantially different EIM patterns. For 

able-bodied participants, the motions could be constrained by 

blocking the motion of the wrist and the hand with an 

orthopedic splint. After amputation of the hand, most muscles 

remain intact and can be voluntarily contracted by the user. 

However, the muscles do not connect to any joint that could be 

constrained, and the anatomy after an amputation is very 

individual. Since it was not clear whether the phantom motions 

executed by participants with limb deficiency would be more 

similar to the constrained or unconstrained motions of able-

bodied participants, we decided to include both conditions for 

the latter subject group.  

A. Experimental Setup 

The overall experimental setup is shown in figure 1A. To 

acquire the time-dependent bioimpedances, a low excitation 

current is applied to the tissue via electrodes, and the resulting 

voltage drop is measured. This method, which is also known 

from electrical impedance tomography (EIT), is non-invasive 

and hazards free [31]. The EMG-EIM measurement device was 

custom developed for experimental purposes and 

systematically evaluated in [32]. It offers four channels of 

simultaneous EMG and EIM recording using 16 wet electrodes 

(4 electrodes per channel). The two outer electrodes of each 

channel were used to induce the current for the EIM 

measurement (100 µA, 91 - 125 kHz sine-wave; To avoid 

interference between the channels, each EIM channel operated 

at a different frequency (91 kHz, 100 kHz, 111 kHz, 125 kHz 

wave). The inner electrodes were used for measuring both the 

EMG and the voltage drop caused by the current injection for 

calculating the bioimpedance. Since the stimulation frequency 

used for the EIM measurement was outside the surface EMG 

spectrum, it could be efficiently removed from the EMG by 

filtering, which was implemented in the hardware [32]. The 

wet, disposable Ag/AgCl electrodes (Ambu Neuroline 720) 

were placed in a row aligned with the direction of the muscle 

fibers on the lower-arm areas marked in  

Figure 1A with a center-to-center inter-electrode distance of 

~24 mm. Due to the small currents, the tissue can be considered 

a linear time-invariant system [30]. As it was shown in [33], the 

human tissue can therefore be approximated with a complex 

impedance model, which explains the phase shifts between the 

induced current and the resulting voltage. Therefore, the EIM 

measurements used for this study were characterized in both 

magnitude and phase features.  The currents applied in this 

work fulfill the standard for medical electrical safety (IEC 

60601-1) and are not perceived by the users, nor lead to any 

discomfort or skin irritation. 

The subjects were sitting comfortably in a chair in front of the 

PC, facing the monitor that provided real-time experimental 

instructions such as what motions should be performed and at 

which arm position and intensity (Fig. 1B). The data for able-

bodied subjects were acquired from their dominant arm. In 

unconstrained condition, both able-bodied and subjects with 

limb deficiency were able to move their arms freely. In 

constrained condition, the (able-bodied) subjects’ arm was 

 
Figure 1. The experimental setup consisted of a device that simultaneously measured EIM and EMG from four recording sites (channels) and a PC for data 
recording and visual instructions (A). Instructions were provided regarding the arm targeted position, the motion class, and the contraction level. Visual feedback 

was provided on the contraction level only (B).  
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fixed using a commercial orthotic splint adapted to their body 

size (OttoBock 28P44=R-M, small, medium, and large). This 

splint was designed to prevent any movement of the hand and 

wrist. During the pause between trials, participants were 

allowed to position their arm ad libitum. Before starting each 

task, the arm was positioned flexed next to the body to achieve 

a comfortable starting position.  

The EIM/EMG acquisition hardware was connected to a 

standard Desktop PC (Windows 7, core @i7, 8GB RAM) 

running data acquisition software written in MATLAB 

(Simulink) real-time development framework [34]. The 

sampling rate of data acquisition was set to 1000 Hz. The visual 

feedback loop operated at 30 Hz.  Experimental Task and 

Protocol 

All experiments were approved by the local ethics committee 

of the University Medical Center Göttingen (#22-04-16). 

Ten able-bodied participants, two individuals with 

transradial amputation (A1 & A2) and one person with 

congenital limb deficiency (C1), were recruited for this study 

(Table 1).  

Before starting the experiment, the experimental protocol 

was explained, and questions were answered. After the 

participant signed the experimental consent, the skin of the 

(residual) forearm was prepared with abrasive electrode gel, 

and the residues were removed with water. Four regions on the 

lower arm were selected for data recording by palpating the 

muscles during the following contractions: wrist flexion, wrist 

extension, radial deviation, and ulnar deviation. Once the 

regions had been identified, 16 electrodes were placed (4 per 

region/input channel) and, after a short five-minute break, the 

data acquisition could begin.  

During the experiment, the able-bodied participants 

performed six motion classes: hand open, hand close, wrist 

flexion, wrist extension, radial deviation, ulnar deviation, plus 

the rest class (no motion). The motion classes for the 

participants with limb deficiency were individually adjusted to 

include those (phantom) motions that they were able to execute 

in a reproducible and distinguishable fashion. We decided to 

use well-separable motions instead of the most intuitive ones, 

which is common among prosthetic users using pattern 

recognition systems. Indeed, all commercial systems allow 

custom (re)mapping of any muscle contraction into any 

prosthesis function [3], [4]. For participant A1, these included 

six motions (wrist flexion/extension, index finger extension, 

thumb extension, pinky extension, and pronation) and the rest 

class. Participants A2 and C1 could reproduce only four 

motions and a rest class (A2: hand open/close, thumb 

flexion/extension, C1: wrist flexion/extension, radial/ulnar 

deviation). To differentiate for the factor of a used number of 

classes within the prostheses’ users, we analysed A1 once with 

all six motion classes and once with a reduced set of four 

motions.  To capture the signal variability in different arm 

positions, all motions were performed in the following three 

arm positions: arm elbow flexed at 90°, arm reaching towards 

the table surface, and arm elevated above head level.  

 
The experiment consisted of data acquisition in two 

conditions (constrained, unconstrained) for able-bodied and 

one condition (unconstrained) for participants with limb 

deficiency. At the beginning for each participant a maximal 

prolonged voluntary contraction (MPVC) was measured for 3 

seconds for each of the motion classes and conditions 

(constrained, unconstrained) during flexed arm position. This 

data was used to automatically calibrate amplitude feedback 

during the data collection phase to equalize the amount of effort 

across the subjects. The MPVC was calculated as the maximal 

average root-mean-square (RMS) value of the EMG across all 

four acquisition channels (150 ms window, 120 ms overlap). 

During the data acquisition, the participants were required to 

follow the trapezoidal “force” profiles by regulating their 

muscle activation in real-time. The profiles consisted of a 2.5 s 

long on-ramp and a plateau that was 4 s long (Fig. 1B). The 

participants received real-time feedback of their contraction 

level during the data collection, estimated by the mean RMS 

value across all EMG channels (150 ms window, 120 ms 

overlap), and were asked to match the target force profiles as 

good as possible while contracting the muscles in the requested 

arm position. No classifier feedback was provided during the 

data collection in order not to bias the results towards a 

particular feature selection due to potential adaptations of the 

user. Five trials were recorded for each motion class. Each 

condition (constrained, unconstrained) consisted of seven 

motion classes in three arm positions. This resulted in a total of 

5 trials x 3 arm positions x 7 classes = 105 trials per condition. 

The same number of samples was recorded for all motion 

classes and the rest class in all conditions and arm positions, 

making the data-set balanced. The order of motions and arm 

positions was randomized. To avoid possible bias due to 

training effects or fatigue, half of the able-bodied participants 

started in the constrained and a half in the unconstrained 

condition. 

B. Data Processing and Evaluation 

The acquired EMG data was post-processed with a second-

order band-pass filter (10-450 Hz). No stimulation artifacts 

coming from the current injected by the EIM interface were 

TABLE I 

OVERVIEW OF PARTICIPANTS WITH LIMB DEFICIENCY 

 
Prosthesis 

user 1 (A1) 

Prosthesis 

user 2 (A2) 

Prosthesis 

user 3 (C1) 

Limb 

deficiency type 

Transradial 

amputation 

Transradial 

amputation 

Congenital 

limb deficiency 

Residual limb 

length 
Short Long Long 

Age 60 62 47 

Gender Male Male Male 

Prosthesis type 

2-DoF, 

2-Ch. 

myocontrol 

1 DoF,  

2-Ch. 

myocontrol 

1-DoF, 2-Ch. 

myocontrol 

Prosthesis use Daily Daily Occasionally 

Number of 

classes 
6 + rest 4 + rest 4 + rest 

Abbreviations: DoF – Degree of Freedom; Ch - channel 
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observed in the filtered signals.  

All data were processed offline with MATLAB in blocks of 

200 ms with an increment of 40 ms to keep the delay within the 

acceptable range for an intended real-time application [35]. For 

the EMG data, four time-domain features (mean absolute value 

(MAV), zero-crossings (ZC), slope-sign-change (SSC)), 

wavelength (WL)) [7] were extracted from the static part of the 

contraction profiles. For the EIM, the magnitude and the phase 

were averaged across each block and directly used as features. 

Depending on the investigated combination of modalities, this 

resulted in a total number of four (i.e., the condition with EIM-

phase or EIM-magnitude only) to 24 features (i.e., the condition 

where EMG was used with both EIM-phase and magnitude). 

The EIM and EMG features were used to train and validate an 

offline classifier (see III.C-D). We decided for the multi-class 

LDA classifier [36] due to its efficiency and wide application 

in myoelectric control [5], [6]. Importantly, since there is no 

random component and no parameters to be optimized, the 

LDA has the advantage of generating reproducible results, in 

contrast to more complex classifiers, such as support vector 

machines or deep learning networks.  Additionally, this choice 

of the classifier allows for easy comparison between this and 

other (similar) studies. To estimate the offline classifier 

performance, five-fold cross-validation was used, where four 

trials were used to train the classifier and one trial for testing 

and estimation of the classification accuracy.  

The data evaluation was organized in four sections: the first 

section addressed the qualitative properties of the EIM signals, 

while the following three addressed the influence of different 

factors (feature selection, type of muscle contraction, arm 

position, and training with combined data-sets) on the LDA 

classifier performance.  

In the first section (results presented in III.A), we 

characterized the reproducibility of the EIM features in 

unconstrained condition and quantified the contribution of arm 

position (AP) as well as the muscles activation (MA) to signal 

magnitude and phase (|𝑍| and 𝑍𝛷, respectively) for each 

subject independently. We used the inverse coefficient of 

variation (Ic), calculated as a ratio between the absolute 

difference of the signals means (|𝜇𝑎 − 𝜇𝑏|) and its standard 

deviation (σ𝑎). More specifically, the influence of the arm 

position (𝐼𝑐𝐴𝑃) was evaluated for the ‘rest’ class (𝐼𝑐𝐴𝑃
𝑟 ) by 

comparing: 1) the acquired data in the arm position ‘reach’ with 

the data in the arm position ‘flexed’ (𝐼𝑐𝐴𝑃
𝑟(𝑟−𝑓)

) and 2) the 

acquired data in the arm position ‘elevated’ with the data in the 

arm position ‘flexed’ (𝐼𝑐𝐴𝑃
𝑟(𝑒−𝑓)

) (see formula 1). Furthermore, 

the influence of the muscle activation (𝐼𝑐𝑀𝐴) was evaluated for 

each of six motion classes (wrist 

flexion/extension/adduction/abduction and hand open/close; 

𝑎𝑖 , 𝑖 = 1, … ,6) by subtracting the magnitude of the ‘rest’ class 

in each arm positions separately: 1) ‘flexed’ (𝐼𝑐𝑀𝐴
𝑎𝑖−𝑟(𝑓)

), 2) 

‘reach’ (𝐼𝑐𝑀𝐴
𝑎−𝑟(𝑟)

), 3) ‘elevated’ (𝐼𝑐𝑀𝐴
𝑎𝑖−𝑟,(𝑒)

) and 4) flexed, 

reached, and elevated pooled together (𝐼𝑐𝑀𝐴
𝑎𝑖−𝑟(𝑓𝑟𝑒)

) (see formula 

2). The final 𝐼𝑐𝑀𝐴
𝑎−𝑟  value for each arm position was calculated 

as the average of the Ic’s across all six motion classes (see 

formula 3). Therefore, the formulas for calculating different Ics 

can be formalized as follows:  

(1) 𝐼𝑐𝐴𝑃
𝑟(𝑥−𝑓)

=
|𝜇𝑟(𝑥)−𝜇𝑟(𝑓)|

𝜎𝑟(𝑥) , where ‘r’ stands for ‘rest’ class; ‘x’ 

can be either arm position ‘r’ (reach) or ‘e’ (elevated); ‘f’ is 

the arm position ‘flexed’ 

(2) 𝐼𝑐𝑀𝐴
𝑎𝑖−𝑟(𝑥)

=
|𝜇𝑎𝑖(𝑥)−𝜇𝑟(𝑥)|

𝜎𝑎𝑖(𝑥)  , (3) 𝐼𝑐𝑀𝐴
𝑎−𝑟(𝑥)

=
 ∑ 𝐼𝑐𝑀𝐴

𝑎𝑖−𝑟(𝑥)𝑁=6
𝑖=1

𝑁
, 

where 𝑎𝑖, 𝑖 = 1, … ,6 stands for six wrist/hand movements; 

‘r’ stands for the ‘rest’ class; ‘x’ can be any of the 

following arm positions ‘f’, ‘r’, ‘e’ or ‘fre’ 

Put differently, since 𝐼𝑐 compares the magnitude of signal 

change to its variability, the 𝐼𝑐𝐴𝑃
𝑟(𝑟−𝑓)

 𝑎𝑛𝑑 𝐼𝑐𝐴𝑃
𝑟(𝑒−𝑓)

  effectively 

describe how much the observed feature is affected by the 

change of the arm position from ‘flexed’ to ‘reach’ and from 

‘flexed’ to ‘elevated’, respectively. Similarly, 

the 𝐼𝑐𝑀𝐴
𝑎−𝑟(𝑓)

, 𝐼𝑐𝑀𝐴
𝑎−𝑟(𝑟)

, 𝐼𝑐𝑀𝐴
𝑎−𝑟(𝑒)

, 𝑎𝑛𝑑 𝐼𝑐𝑀𝐴
𝑎−𝑟(𝑓𝑟𝑒)

 capture the 

contribution of voluntary muscle activation to the signal 

amplitude for different combinations of arm positions. Also, 

since each class in the given arm position consists of five trials 

that were pooled together, the Ic inherently depicts the 

reproducibility of the investigated features. The lower the 

variability of the signal across the selected set of trials is, the 

higher the ratio between its mean and the standard deviation 

will be. Importantly, although all Ic’s were assessed separately 

for four different acquisition channels, only their total average 

was used for the statistical analysis. The aforementioned 

analysis was also performed on EMG signal amplitude (MAV) 

that served as a baseline for comparison to EIM features. 

Additionally, we have computed the correlation matrix for all 

EMG and EIM features. This analysis involved all able-bodied 

participants and all four channels. The goal was to further assess 

how independent EIM amplitude and phase are from each other 

and from the EMG features. 

In the second part (results presented in III.B), we assessed the 

amount of information contained in the magnitude and phase of 

the EIM relative to the EMG time-domain features. To this 

goal, the impact of different feature-sets on the cross-validation 

classification accuracy was investigated: EMG feature-set only 

(EMG), EIM magnitude only (|𝑍|), EIM phase only (𝑍𝛷), EIM 

magnitude and phase combined (EIM), and finally EMG 

feature-set complemented with the full EIM features (EMG + 

 

Figure 2. Representative example of EMG and EIM signals for all four 

channels and three contractions (plus a rest phase) in the arm position ‘reach’. 

The green lines indicate the targeted contraction profiles. Please note that 
baseline offsets have been removed, and the scaling has been adjusted for 

improved readability. 
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EIM). For the able-bodied participants, this was done for the 

constrained and unconstrained conditions separately to identify 

the influence of constraining the motion and to identify which 

condition reflects more the situation in the prosthetic users.  

During this evaluation, the classifier training and testing were 

always performed in the same arm position. We directly 

compared the six combinations that are most relevant from a 

translational point of view: EIM vs. EIM (|𝑍|) and 𝐸𝐼𝑀(𝑍𝛷) 

EIM (|𝑍|) vs. 𝐸𝐼𝑀(𝑍𝛷), EMG vs EIM, EMG vs EMG + EIM, 

EIM vs EMG + EIM. 

In the third part (results presented in III.C), we investigated 

the influence of altering the arm position between classifier 

training and testing. Here we used the reduced number of 

combinations between feature sets (EIM, EMG, and EMG + 

EIM). Similar to section III.A, we specifically assessed the 

robustness and stability of the EIM signal in the context of 

changing arm position.  

In the last section (results presented in III.D), we employed 

the conventional approach for addressing the limb position 

effect [19], [20], [37]. For this, the classifier was trained with a 

combined assembly of all three arm positions and, likewise, 

tested in all positions.  The goal of these investigations was to 

assess the effectiveness of the conventional approach in 

combating the arm position effect when using classifiers based 

on the EIM only or the combination of EMG + EIM features.  

The results for analysis sections III.A-D are presented as a 

median (interquartile range) and tested for statistical 

differences. More specifically, the data from able-bodied 

subjects were tested for significant differences across subjects 

in each of the experimental conditions separately (constrained, 

unconstrained). As the Kolmogorov-Smirnov normality test 

revealed that the results were generally not normally 

distributed, non-parametric Wilcoxon signed-rank tests were 

used with a significance level of p = 0.05. To compensate for 

multiple comparisons, Bonferroni-Holm correction was 

applied. All statistical analyses were conducted in MATLAB 

using the statistics and Machine Learning Toolbox. 

III. RESULTS 

A. Qualitative assessment of the EIM signals 

Figure 2A shows a representative example of raw EMG data 

and MAV features for all four channels, while figures 2B-C 

show the simultaneously recorded EIM amplitude and phase 

signals. The correlation between all EMG and EIM features is 

depicted in figure 3. The correlation between EIM amplitude 

and phase was relatively low (0.1). Also, the absolute 

correlation between EMG and EIM features was always lower 

than 0.17, suggesting that EMG and EIM are not strongly 

correlated. On the other hand, the correlation between EMG 

features with each other was often much larger than the 

correlation between EIM features. For example, MAV and WL 

had a substantial correlation (0.93), and the ZC and SSC 

likewise exhibited a similar trend (correlation of 0.65).  

The arm position influenced the magnitude and phase of the 

EIM more than the magnitude of the EMG (Fig. 4A - 𝐼𝑐𝐴𝑃). 

More specifically, although the 𝐼𝑐𝐴𝑃 of all three features 

significantly increased with the change of arm position from 

‘reach’ to ‘elevated’; this increase was the largest in the case of 

the EIM-phase. For example, compare the 𝐼𝑐𝐴𝑃 in the arm 

position ‘reach-flex’ to 𝐼𝑐𝐴𝑃 in the AP ‘elev-flex’ (note that for 

the sake of simplicity, these will be referred to ‘reach’ and 

‘elevated’ in the further text). In general, the change of the arm 

position affected the EIM-phase significantly more than it 

affected the amplitude of EMG (for both changes of the arm 

positions) or even the EIM-magnitude (for elevated arm 

position). On the other hand, the 𝐼𝑐𝐴𝑃  of the EIM-magnitude 

was worse from the EMG only in the case of the elevated arm 

position (4.2[2.9] vs. 2.2[2.4], for EIM-magnitude and EMG 

amplitude, respectively).   

The influence of the voluntary muscle activation on both 

EIM-features generally weakened with the change of the arm 

 

Figure 3. Correlation matrix depicting the correlation between all EMG and 

EIM features. The absolute correlations between EIM amplitude and phase and 

between both EIM with the EMG features are consistently lower than 0.17. 

 

 

 
Figure 4. The inverse coefficient of variation (Ic) measures the contribution of 

arm position (AP, subplot A) or voluntary muscles contraction (MA, subplot B) 

to the EMG amplitude, EIM-magnitude and phase (|𝑍|, 𝑍𝛷). The “Class:” and 

“AP:” notations in the x-axis indicate between which two states the Ic was 

evaluated. In subplot A the class remained at rest while the arm-position was 

varied and in subplot B the class was changed from rest to any other class. 
Crosses depict outliers, stars statistically significant differences and the dotted 

lines connecting a boxplot with an Ic*-notation depicts statistical differences 

between the condition of the box and the conditions indicated by the Ic*-
notation for the same feature. The magnitude and phase of the EIM were 

significantly stronger influenced by a changing arm position than the EMG. 

The voluntary muscle contractions had a significantly lower influence on the 
EIM features in comparison to EMG.  
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position for both EMG and EIM. This is reflected in the 

decreasing trend of 𝐼𝑐𝑀𝐴 as the arm position was changed 

between ‘flexed’, ‘reach’, and ‘elevated’ (Fig. 4B - 𝐼𝑐𝑀𝐴). The 

𝐼𝑐𝑀𝐴 of the EMG was significantly better from both EIM 

magnitude and phase for all arm positions. Importantly, in the 

‘reach’ position the 𝐼𝑐𝑀𝐴 of the EMG amplitude was higher than 

the 𝐼𝑐𝐴𝑃  of the same arm position, which suggests that the 

contribution of the muscle activation to the EMG amplitude was 

consistently higher than that of the arm position itself. 

Furthermore, in the case of the EMG, in the ‘elevated’ position, 

there was no difference between the 𝐼𝑐𝑀𝐴and 𝐼𝑐𝐴𝑃 , however, the 

contribution of this arm position to the EIM features amplitude 

was significantly higher than that of the muscle activation.  

Finally, in comparison to the values measured for the 

individual arm positions, pooling of the arm positions resulted 

in a significant decrease in the contribution of the voluntary 

muscle activation for all features (Fig. 4B - 𝐼𝑐𝑀𝐴 , 𝐴𝑃: 𝑎𝑙𝑙). Even 

in this case, the EMG amplitude remained the feature that was 

strongest affected by muscle activation; it is followed by the 

EIM-magnitude and EIM-phase (2.23[0.8] vs. 1.8[0.1] vs. 

1.5[0.2], respectively).   

B. Influence of EIM-EMG feature combinations and muscle 

contraction type on the classification accuracy 

LDA classification accuracy without changing the arm 

position between training and testing is provided in figure 5. 

Compared to using just the magnitude or the phase, the 

combination of phase and magnitude in the EIM-classifier leads 

to significantly better classification accuracy in all cases,  

independent of the muscle contraction type (constrained/ 

unconstrained) or arm position (arm flexed/reaching/elevated). 

The average improvement across all conditions was 12 and 16 

percentage points ((EIM(|𝑍|) 31% / EIM(ZΦ) 35% vs. EIM 

19%±10%). 

 The EMG-classifier had moderate error rates for all arm 

positions and conditions (8-12%, Fig. 5A-F). The three 

prosthetic users (A1, A2, C1) seem to follow the same trend, 

although here, no statistical analysis was conducted due to the 

small sample size (Fig. 5G-I). 

The EIM-classifier exhibited a relatively high median 

classification error in the constrained condition (above 20%; 

Fig. 5A-C). However, in unconstrained condition (Fig. 5D-F), 

its classification rate significantly improved for all three arm 

positions (p < 0.05, not depicted in Fig. 5) and achieved similar 

performance as the EMG-classifier. Interestingly, the EMG-

classifier appeared to be less influenced by the constraining of 

the hand-wrist motion, for here, no significant differences could 

be detected.  

When able-bodied subjects utilized unconstrained motions, 

the performance of the EMG-classifier improved in all three 

arm positions when EIM features were added, which was not 

the case in the constrained condition (Fig. 5D-F). The average 

error reduction was 5 percentage points in comparison to EMG-

classifier alone (EMG 9% vs. EMG + EIM 4%). Amputee A1 

with all six classes displayed a similar trend; the error was 

decreased by 7 percentage points (EMG 11% vs. EMG + EIM 

4%; Fig. 5G-I).  

Two out of three prosthesis users exhibited consistent trends 

(Fig. 5G-I). For A2 and C1, the performance appeared better in 

all arm positions for EMG compared to EIM, as for the able-

bodied participants. Especially for A2 the error for the EIM-

classifier fell into a relatively high range (19-42%), which was 

similar to the constrained case of the able-bodied users. For A1 

and C2 the performance for EIM features fell into the range of 

the unconstrained case of the able-bodied participants. A1 was 

an outlier in the sense that in two arm positions (reach and 

elevated) he performed slightly worse with EMG than with 

EIM-classifier. However, this was only the case when all six 

classes were included. When only four classes were used, as for 

the other two prosthesis users, he had a better performance with 

EMG features than with EIM, similar to the able-bodied 

participants and the other two prosthesis users. Interestingly, 

when only four classes were used (A1 with reduced motion-set, 

A2 and C1) the error of the EMG-classifier was already so low 

that the classification rate could not be further improved by 

adding EIM features. On the contrary, in several cases, the 

EMG-EIM classifier performed worse than EMG-classifier. 

C. Influence of altering arm positions on classification 

accuracy for EMG, EIM, and their combination 

The classification performance degraded when the arm position 

between the training and testing was changed (Fig. 6). 

 
Figure 5. Influence of different combinations of EMG-EIM features, arm 
positions and muscle contraction types on the classification error when the arm 

position is not changed between the classifier training and testing. The results 

are depicted for able-bodied (constrained (A-C), unconstrained (D-F)) and  
prosthesis users (G-I). A star (*) denotes statistically significant differences. 

EMG performs better than EIM, but the combination EMG+EIM can further 

improve the performance. 
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For able-bodied participants, the error of the EMG-classifier 

increased similarly in both constrained and unconstrained 

conditions, from approximately 9-12% range to 12-23% range, 

respectively (Fig. 6A and D). The most considerable 

degradation was observed when the position was changed 

between two extremes, that is, between flexed and elevated arm 

position. The EIM-classifier, which in the unconstrained 

condition performed in each arm position only marginally 

worse than EMG, was now substantially more influenced by the 

change of arm position between training and testing. The 

classification error increased dramatically to around 34-68% in 

the unconstrained and around 55-75% in the constrained 

condition (Fig. 6B and E).    

 

When the arm position is changed between training and 

testing, the performance of the EMG classifier substantially 

worsened if it was combined with EIM. This contrasts with the 

results from section III.B, where this was not the case. For 

example, in the worst combination (alternation between flexed 

and elevated arm position), the error of the EMG + EIM 

classifier increased to approximately 57 – 65% (Fig. 6-C and 

F), which is almost as low as EIM alone.  

For participants with amputation or congenital limb deficiency, 

a similar trend was observed (Fig. 7). Here also, the effect of 

arm position change was substantially stronger in EIM than in 

the EMG case. For all three prosthesis users, the negative 

impact of arm position change was likewise stronger in the 

combined EMG+EIM case than in the EMG case. 

 

D. Performance of EMG, EIM and their combination in 

alternating arm position after pooled training 

The performance of the classifier trained with combined arm 

positions was evaluated across three different feature 

assemblies: EIM only, EMG only, and EIM + EMG 

combination (Fig. 8).   

 As expected, by including all arm positions in the training 

data, the error rate of the EMG-classifier could be reduced to a 

similar level as when training and testing in the same arm 

position.  

In the unconstrained condition, the EIM-feature classifier 

trained with all arm positions improved its classification 

accuracy compared to training with a single position to a similar 

range as for unchanged arm position (Fig. 8B). In the 

constrained condition, the EIM classifier performed 

significantly worse than the EMG or the EMG + EIM classifier 

(Fig. 8A). Consistent with previous observations (see section A 

of the results), for the unconstrained condition, there was no 

statistically significant difference between EMG and EIM. 

Finally, in this condition, the combination of EMG and EIM 

performed significantly better than the EMG alone; that is, the 

error decreased by 7 percentage points, on average (EMG 9.6% 

 

 
Figure 6. Influence of changing arm position between training and testing on 
classification error for EMG, EIM and EMG+EIM. The results are depicted for 

able-bodied subjects in constrained (A-C) and unconstrained (D-F) condition. 

Annotations F, R, E stand for arm position flexed, reach and elevated, 
respectively. EIM and EMG+EIM are heavily influenced by changing arm 
position when trained in one position only. 

 
Figure 7. Influence of changing arm position between training and testing on 

classification error for EMG, EIM, and EMG+EIM classifiers. The depicted 
classification errors are for individuals with limb deficiency. Annotations F, R, 

E stand for arm position flexed, reach, and elevated, respectively. Similar to 

able-bodied, EIM and EMG+EIM are heavily influenced by changing arm 
position. 

 

 
Figure 8. Influence of training with pooled arm position data on the 

classification error for EMG, EIM and EMG+EIM.  The subfigures depict the 
classification-error of able-bodied participants (constrained (A) and 

unconstrained (B)) and of prosthesis users (C). A star (*) denotes statistically 

significant differences. With the pooled training strategy, the combination of 

EIM+EMG outperforms EIM or EMG alone in most cases. 
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vs. EIM + EMG 2.7%).   

For most prosthesis users the combined arm position training 

strategy resulted in average errors for EIM features to fall below 

15%, which was in the range of errors measured with the able-

bodied users in unconstrained condition. Only for A2, EIM-

classifier performed substantially worse with an error rate of 

37%, which was larger than the most able-bodied users 

exhibited in constrained condition (Fig. 8C).  When the number 

of classes for prosthesis users was four (A1 (4 cl.), A2, C1), 

then those users who had classification errors below 5% with 

EMG alone did not demonstrate any improvement with the 

inclusion of additional EIM features. However, amputee A1, 

who was the only prosthesis user who could generate six 

distinct motion classes, showed significant error-rate reduction 

when EMG was endowed by EIM features (EMG 10% vs. EMG 

+ EIM 4%; Fig. 8C, A1(6cl)). Therefore, in the case of six 

motion-classes, his performance with the EMG-EIM classifier 

was similar to the performance of able-bodied subjects in the 

unconstrained condition.  

IV. DISCUSSION 

We have assessed the application of EIM in the context of 

myocontrol by evaluating how the feature selection, type of 

muscle contraction, arm position, and training with combined 

data-sets influence the classification performance. In addition, 

we have assessed the correlation between all features, the EIM 

signal reproducibility, and the influence of voluntary muscle 

activity as well as the arm position on the magnitude of signal 

change. The evaluation was performed on ten able-bodied and 

three participants with upper limb deficiency (two amputees 

and one participant with congenital limb deficiency).  

 

  EIM is more influenced by the arm position than by voluntary 

muscle contractions (Results, Section A). When observing any 

of the EIM-features and comparing their  IcAP  to IcMA it is 

evident that the changing arm position contributes to the overall 

EIM signal amplitude significantly more than the voluntary 

muscle contraction. A possible reason for this could be the 

deformation of the body of the muscle due to the change in 

overall muscle length with changing joint position. The EIM-

phase seems to be significantly influenced by the change of 

muscle morphology since its  IcAP is consistently higher than 

that of EMG or even of EIM-magnitude. The EIM-magnitude 

shows somewhat better results than the EIM-phase, as it can be 

seen when observing the  IcAP in the ‘reach’ arm position. It 

seems that in this case, the change of muscle morphology due 

to the changing arm position was not large enough to render 

 IcAP of EIM-magnitude significantly different from that of the 

EMG amplitude; however, this changes once the arm position 

is switched to ‘elevated’. Moreover, the influence of the muscle 

activation on the EIM features was attenuated with the arm 

elevation and their IcMA was never better than that of the EMG.  

Additionally, as previously indicated, the ‘elevated’ arm 

position contributed to the amplitude of the EIM features 

significantly more than the voluntary muscle activation, which 

was not observed in the case of the EMG amplitude. 

Furthermore, in contrast to EIM-features, the contribution of 

the ‘reach’ arm position to the EMG-amplitude was 

significantly weaker than the contribution of the muscle 

activation. This indicates that, in the context of myocontrol, the 

EMG in comparison to EIM exhibits overall a better ratio 

between the useful (IcMA ) and non-useful ( IcAP) information 

content.  

 

Magnitude and phase of EIM contain complementary 

information, and unconstrained motions lead to better 

classification performance than constrained motions (Results, 

Section B). The results demonstrated magnitude and phase of 

the EIM are not strongly correlated and that the combination of 

both increases its classification performance. Additionally, it 

seems that EIM contains more information for unconstrained 

than for constrained motions in able-bodied subjects (see also 

Results, Section D). This is a somewhat expected result since 

bioimpedance measures the tissue composition of the 

underlying (muscle) tissue. In constrained condition, the 

muscles cannot change their morphology as much (only 

isometric contractions), and consequently, the bioimpedance 

could indeed provide only limited information about executed 

motions. On the other hand, the unconstrained condition, which 

allowed for more prominent changes in muscle morphology, 

exhibited significantly better EIM classification rates. Two out 

of three prosthesis users (A1 and C1) exhibited EIM-

performances similar to the able-bodied subjects in the 

unconstrained condition, independent of the number of classes 

used. A2, on the other hand, performed substantially worse with 

EIM features, similar to the able-bodied in constrained 

condition. This emphasizes the strong influence of the anatomy 

of the residual limb on the information content of the EIM 

signal features. 

 

EMG performs better than EIM, and the EMG+EIM 

combination outperforms both EMG and EIM when the arm 

position does not change (Results, Section B). The fact that EIM 

alone performed worse than EMG but their combination 

outperformed both indicates that EIM itself contains less 

reliable information about the conducted motions than EMG, 

but that at least some part of the information contained in the 

EIM is complementary to that in the EMG. This is also 

supported by the low correlation between EIM and EMG 

features. The EMG features were substantially stronger 

correlated with each other. For the prosthesis users, this holds 

only for A1 with all six motion-classes used. In all scenarios 

with four classes, the performance may have already been 

saturated with the EMG features only. 

 

EIM is more influenced by the limb position effect than the 

EMG (Results, Section C and D). In section A it was already 

observed that the arm position has a significant effect on the 

magnitude of the EIM signals. This effect was consistently 

observed also when trying to classify EIM signals in both 

amputee and able-bodied subjects (Section C). It is most likely 

a consequence of muscle deformation in combination with 

changes in body fluids such as blood volume, which in turn 
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changes the bioimpedance of the analyzed tissue. Moreover, the 

performance of a combination of both EMG and EIM is more 

influenced by a change of arm position between training and 

testing than of EMG alone. This indicates that adding the 

additional EIM information to the EMG is not always 

beneficial, but due to the strong impact of the EIM features on 

untrained arm positions, this can even worsen the robustness. 

When including all arm positions into the training-set as 

suggested by [19], [37], the negative impact of the additional 

EIM features is reversed, and combining EIM with EMG 

performs better than EMG alone as in the case of single-arm 

positions (Results, Section D). This could be due to 

complementary information contained in the EIM (as discussed 

for the unchanged arm positions) and/or a predictive 

characteristic of the EIM (i.e., reproducibility of its baseline; 

see Section A) for the arm position that helps to better classify 

the EMG features. Indeed, we were able to classify the arm 

position using only the “rest”-class data with an error as low as 

20% when using EIM features, which was approximately twice 

as good as with EMG-features. However, to feed information 

regarding the arm position into the classifier would be much 

simpler using IMUs, as suggested by [14], [19], [38], [39].  

In summary, including EIM in addition to EMG into the 

feature set can improve the performance if a proper training 

strategy is followed, such as including multiple arm positions 

in the training set. Including all possible arm positions in a 

prosthetic application may be practically not feasible for the 

duration of the training protocol, which could lead to 

degradation for untrained arm positions when using EIM and 

EMG in comparison with EMG alone. A potential solution 

could be to use dynamically changing arm positions during the 

training, as suggested by [23], however, further research would 

be needed to investigate these approaches. 

 

From a practical point of view, EIM needs more complex 

hardware and two additional stimulation electrodes per channel, 

but the measuring electrodes and signal acquisition hardware 

can be shared with the EMG path. Physiologically, EIM 

contains a source of delay not present in EMG, as the 

myoelectric activity precedes muscle contraction. On the other 

hand, due to the relatively high stimulation frequency of the 

EIM measurement system, feature extraction can be performed 

on much shorter time windows than in the case of the EMG 

signal. 

 

Study outlook. This study recruited ten able-bodied 

participants and three prosthetic users. Further tests with 

additional prosthetic users are required to get a better 

understanding of the practical applicability of the EIM system, 

specifically because persons with upper limb deficiency present 

a very heterogenic group, as visible from our study results. 

Within the relatively short duration of the experiments (around 

30 minutes per condition), we did not find substantial drifts in 

the EIM, which exceeded the impact of the arm position. 

Longitudinal tests would be required to identify the long-term 

behavior of the EIM. In the case of slow long-term drifts, e.g., 

due to metabolic factors, this may be counteracted by a high-

pass filter with a very low cut-off frequency (e.g., < 0.01 Hz). 

Future work could also investigate the potential of using EIM 

in combination with more complex classifiers, such as deep 

learning networks. Furthermore, the frequency response of the 

bioimpedance could be used as additional information [40]. The 

study was conducted in the laboratory under relatively 

controlled conditions, and not all results can be transferred into 

real-world application [41], [42], where additional factors, such 

as a variation of the contraction level, are present and the user 

can adapt in a closed-loop on feedback he receives from the 

system [43]. However, offline investigations are the only way 

to systematically investigate a larger number of different 

conditions and factors that influence the reliability of EIM as 

the additional information source in the context of myocontrol. 

In this sense, the present work identified advantages but also 

shortcomings of EIM and evaluated to which extent different 

factors influence its performance in the context of myocontrol. 

Therefore, it forms the fundament for further research, 

including real-time prosthetic applications.  

V. CONCLUSION 

In this study, we have assessed the utility of electric 

impedance myography (EIM) in the context of myocontrol 

through qualitative (information content) and statistical 

analysis (classification accuracy).  We demonstrate that EIM 

provides information complementary to EMG since it can 

increase the classification accuracy although, compared to 

EMG, EIM is substantially stronger influenced by altered arm 

positions and is less influenced by muscle activation. 

Nevertheless, the combination of EMG and EIM successfully 

mitigates the arm position effects if all positions are included in 

the training set. Therefore, for the possible application of EIM 

in future myocontrol interfaces, the great influence of 

individual anatomy and arm position on the signal features 

needs to be overcome. 
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